Skip to content

S5 Slidefactory - Documentation Status Quick Reference

Overall Health

Metric Status Details
Function Documentation ✅ 79.8% Good coverage overall
Class Documentation ✅ 63.8% Decent coverage, some gaps
File-Level Documentation ⚠️ 53.8% Needs improvement
Type Hints Coverage ✅ 90% (107/119 files) Excellent
API Endpoints ✅ 192 total Well-organized
Auto-Documentation Ready ✅ YES Via FastAPI /docs

Module Documentation Status

Tier 1: Well-Documented (90%+) ⭐

  • workflowengine/ - 98% functions, 97% classes, 100% files
  • api/ - 100% functions, 62% classes, 100% files
  • n8nmanager/ - 100% functions, 100% classes, 57% files
  • filemanager/ - 98% functions, 100% classes, 56% files
  • results/ - 100% functions, 100% classes, 100% files

Tier 2: Moderate Documentation (50-80%) ⚠️

  • ai/ - 75% functions, 47% classes, 67% files
  • util/ - 77% functions, 56% classes, 26% files (large module)
  • resources/ - 100% functions, 0% classes, 100% files
  • tags/ - 100% functions, 0% classes, 100% files
  • taskmanager/ - 100% functions, 0% classes, 100% files

Tier 3: Needs Documentation (<50%) ❌

  • auth/ - 59% functions, 15% classes, 46% files
  • context/ - 29% functions, 0% classes, 9% files
  • office365/ - 36% functions, 0% classes, 0% files
  • chat/ - 56% functions, 0% classes, 0% files
  • main.py - 31% functions, 0% classes, 0% files
  • celery_app.py - 0% functions, 0% classes, 0% files

What's Living in the Code (Ready to Use)

Excellent Examples of Documentation

1. API Schemas (api/schemas.py)

  • 30 Pydantic models with comprehensive documentation
  • Field descriptions on every model field
  • JSON schema examples in json_schema_extra blocks
  • Ready for OpenAPI/Swagger generation
  • Best practice: Reference this when documenting other schemas
class PresentationGenerateRequest(BaseModel):
    """Request schema for presentation generation."""
    template_id: Optional[int] = Field(None, description="Template file ID from database")
    data: Optional[Dict[str, Any]] = Field(None, description="Data to populate the presentation")

    class Config:
        json_schema_extra = {
            "example": {
                "template_id": 123,
                "data": {"title": "Q4 Report", ...}
            }
        }

2. Workflow Engine Base Classes (workflowengine/base.py)

  • Comprehensive abstract method documentation
  • Parameter descriptions with types
  • Return type documentation
  • Error handling clearly specified
  • Best practice: Reference when adding new workflow engines
@abstractmethod
async def list_workflows(self, user_session: SessionData) -> List[WorkflowInfo]:
    """
    List all workflows available to the user from this engine.

    Args:
        user_session: User session data for permission checking

    Returns:
        List of WorkflowInfo objects
    """
    pass

3. AI Provider System (ai/base.py)

  • Clear provider interface with method signatures
  • Validation patterns documented
  • Factory pattern for provider registration
  • Best practice: Reference when adding new AI providers

Available Auto-Documentation

FastAPI Documentation (Built-in)

  • Swagger UI: http://localhost:8000/docs
  • ReDoc: http://localhost:8000/redoc
  • OpenAPI JSON: http://localhost:8000/openapi.json

Auto-generates from: - Router endpoints with summary and description - Pydantic models with Field() descriptions - Response schemas with error models


Critical Documentation Gaps (Priority Order)

🔴 CRITICAL: Context Module (9.1% file-level docs)

This is the RAG (Retrieval-Augmented Generation) system. Needs documentation for:

  1. context/models.py - SQLAlchemy models
  2. Document: Document class structure
  3. Document: Chunk class structure
  4. Document: Vector storage strategy

  5. context/util/ingest.py - Document ingestion

  6. Document: Upload pipeline
  7. Document: File type handling
  8. Document: Storage strategy

  9. context/util/chunking.py - Text chunking

  10. Document: Chunking strategy
  11. Document: Jina API integration
  12. Document: Chunk size tuning

  13. context/util/embedding.py - Vector embeddings

  14. Document: Embedding model used
  15. Document: Dimension configuration
  16. Document: API integration

  17. context/util/db.py - Vector search

  18. Document: Similarity search implementation
  19. Document: pgvector operations
  20. Document: Query patterns

🟠 HIGH: Authentication System (15-59% coverage)

Essential for security and user management:

  1. auth/auth.py - Core authentication
  2. SessionData structure
  3. Session lifecycle
  4. Cookie management

  5. auth/azure_auth.py - Azure AD integration

  6. OAuth flow
  7. Token handling
  8. Scopes configuration

  9. auth/permissions.py - Permission checking

  10. Permission model
  11. Role-based access control
  12. Resource access patterns

  13. auth/provisioning.py - User provisioning

  14. User creation flow
  15. Role assignment
  16. Profile setup

🟠 HIGH: Utility Functions (26.1% file-level docs)

Large module with many helpers (23 files):

  1. util/ppt/ - PowerPoint processing
  2. ImageProcessor.py
  3. ImageTransformer.py
  4. extract.py, prepare.py, replace.py

  5. util/database.py - Database utilities

  6. Session management
  7. Connection pooling

  8. util/cacher.py - Caching system

  9. Cache strategies
  10. Invalidation patterns

  11. util/template_filters.py - Jinja filters

  12. Available filters
  13. Usage patterns

🟡 MEDIUM: Core Application (30% coverage)

  1. main.py (775 lines)
  2. Startup/shutdown flow
  3. Middleware setup
  4. Router registration
  5. Error handling strategy
  6. Health check configuration

  7. celery_app.py

  8. Task configuration
  9. Worker setup
  10. Queue management
  11. Result backend

🟡 MEDIUM: Peripheral Modules

  1. chat/router.py - Chat integration
  2. Widget setup
  3. Message flow
  4. Context management

  5. office365/router.py - Office integration

  6. OAuth flow
  7. File handling
  8. Integration points

How to Add Documentation

For Pydantic Schemas

Current example (GOOD):

class MySchema(BaseModel):
    """Brief description of schema."""

    field_one: str = Field(..., description="What this field is for")
    field_two: Optional[int] = Field(None, description="Optional field description")

    class Config:
        json_schema_extra = {
            "example": {
                "field_one": "example value",
                "field_two": 42
            }
        }

For Functions

Current example (GOOD):

async def list_workflows(self, user_session: SessionData) -> List[WorkflowInfo]:
    """
    List all workflows available to the user.

    Args:
        user_session: User session data for permission checking

    Returns:
        List of WorkflowInfo objects

    Raises:
        WorkflowEngineError: If unable to retrieve workflows
    """
    pass

For Classes

Current example (GOOD):

class WorkflowEngine(ABC):
    """Abstract base class for all workflow engines."""

    def __init__(self, engine_type: WorkflowEngineType, config: Optional[Dict[str, Any]] = None):
        """
        Initialize workflow engine.

        Args:
            engine_type: Type of workflow engine (N8N, Prefect, etc)
            config: Engine-specific configuration dictionary
        """
        pass

For Modules (File-level)

Add at the top of each Python file:

"""
Module description here.

This module handles [main responsibility].

Classes:
    ClassName: Brief description

Functions:
    function_name: Brief description
"""


Quick Wins (Can Complete in <1 day)

  1. Add Field descriptions to auth/users/schemas.py
  2. 8 classes, minimal effort
  3. Complete the API documentation

  4. Add Field descriptions to context/schemas.py

  5. 8 classes, minimal effort
  6. Enable OpenAPI docs for context

  7. Add file-level docstrings to util/ module

  8. 23 files, ~2-3 minutes per file
  9. Major improvement to overall coverage

  10. Document PPT processing pipeline (util/ppt/)

  11. 6 files with processing logic
  12. Critical for understanding presentation generation

For developers new to the project:

  1. Read CLAUDE.md (project guidelines)
  2. Read DOCUMENTATION/README.md (overview)
  3. Read N8N_INTEGRATION.md (workflow system)
  4. Read USER_MANAGEMENT.md (auth system)
  5. Explore /docs Swagger UI (API reference)
  6. Read workflowengine/base.py (architecture)
  7. Read api/schemas.py (data models)

Auto-Documentation Access

FastAPI Swagger UI

  • URL: http://localhost:8000/docs
  • Shows: All 192 API endpoints with:
  • Request/response schemas
  • Query parameters
  • Error responses
  • Try-it-out functionality

OpenAPI JSON Schema

  • URL: http://localhost:8000/openapi.json
  • Use: Generate API clients, documentation sites, etc.
  • Tool: Works with OpenAPI generators

ReDoc (Alternative UI)

  • URL: http://localhost:8000/redoc
  • Shows: Same info as Swagger, different layout

Tools Already Available

  • FastAPI: Automatic OpenAPI generation
  • Pydantic: Schema validation and documentation
  • Type hints: 90% coverage for IDE support
  • SQLAlchemy: ORM with model documentation
  • .claude/DOCUMENTATION/: 9 existing guides
  • .claude/../reports/technical/: 17 technical assessments

Next Steps

  1. Review: This document and the full audit report
  2. Prioritize: Context module first (highest impact)
  3. Document: Auth system second (critical for security)
  4. Enhance: Utility modules third (breadth of codebase)
  5. Create: Architecture diagrams and data flow docs
  6. Generate: API client from OpenAPI spec (optional)

Contact Points

For questions about specific modules, refer to: - Workflows: See workflowengine/base.py and registry.py - AI: See ai/lib.py and providers/ - API: See /docs or api/schemas.py - Storage: See filemanager/storage/base.py - Database: See CLAUDE.md configuration section - Auth: See auth/auth.py and Azure integration guide