S5 Slidefactory - Documentation Status Quick Reference¶
Overall Health¶
| Metric | Status | Details |
|---|---|---|
| Function Documentation | ✅ 79.8% | Good coverage overall |
| Class Documentation | ✅ 63.8% | Decent coverage, some gaps |
| File-Level Documentation | ⚠️ 53.8% | Needs improvement |
| Type Hints Coverage | ✅ 90% (107/119 files) | Excellent |
| API Endpoints | ✅ 192 total | Well-organized |
| Auto-Documentation Ready | ✅ YES | Via FastAPI /docs |
Module Documentation Status¶
Tier 1: Well-Documented (90%+) ⭐¶
- workflowengine/ - 98% functions, 97% classes, 100% files
- api/ - 100% functions, 62% classes, 100% files
- n8nmanager/ - 100% functions, 100% classes, 57% files
- filemanager/ - 98% functions, 100% classes, 56% files
- results/ - 100% functions, 100% classes, 100% files
Tier 2: Moderate Documentation (50-80%) ⚠️¶
- ai/ - 75% functions, 47% classes, 67% files
- util/ - 77% functions, 56% classes, 26% files (large module)
- resources/ - 100% functions, 0% classes, 100% files
- tags/ - 100% functions, 0% classes, 100% files
- taskmanager/ - 100% functions, 0% classes, 100% files
Tier 3: Needs Documentation (<50%) ❌¶
- auth/ - 59% functions, 15% classes, 46% files
- context/ - 29% functions, 0% classes, 9% files
- office365/ - 36% functions, 0% classes, 0% files
- chat/ - 56% functions, 0% classes, 0% files
- main.py - 31% functions, 0% classes, 0% files
- celery_app.py - 0% functions, 0% classes, 0% files
What's Living in the Code (Ready to Use)¶
Excellent Examples of Documentation¶
1. API Schemas (api/schemas.py)¶
- 30 Pydantic models with comprehensive documentation
- Field descriptions on every model field
- JSON schema examples in
json_schema_extrablocks - Ready for OpenAPI/Swagger generation
- Best practice: Reference this when documenting other schemas
class PresentationGenerateRequest(BaseModel):
"""Request schema for presentation generation."""
template_id: Optional[int] = Field(None, description="Template file ID from database")
data: Optional[Dict[str, Any]] = Field(None, description="Data to populate the presentation")
class Config:
json_schema_extra = {
"example": {
"template_id": 123,
"data": {"title": "Q4 Report", ...}
}
}
2. Workflow Engine Base Classes (workflowengine/base.py)¶
- Comprehensive abstract method documentation
- Parameter descriptions with types
- Return type documentation
- Error handling clearly specified
- Best practice: Reference when adding new workflow engines
@abstractmethod
async def list_workflows(self, user_session: SessionData) -> List[WorkflowInfo]:
"""
List all workflows available to the user from this engine.
Args:
user_session: User session data for permission checking
Returns:
List of WorkflowInfo objects
"""
pass
3. AI Provider System (ai/base.py)¶
- Clear provider interface with method signatures
- Validation patterns documented
- Factory pattern for provider registration
- Best practice: Reference when adding new AI providers
Available Auto-Documentation¶
FastAPI Documentation (Built-in)¶
- Swagger UI:
http://localhost:8000/docs - ReDoc:
http://localhost:8000/redoc - OpenAPI JSON:
http://localhost:8000/openapi.json
Auto-generates from: - Router endpoints with summary and description - Pydantic models with Field() descriptions - Response schemas with error models
Critical Documentation Gaps (Priority Order)¶
🔴 CRITICAL: Context Module (9.1% file-level docs)¶
This is the RAG (Retrieval-Augmented Generation) system. Needs documentation for:
- context/models.py - SQLAlchemy models
- Document: Document class structure
- Document: Chunk class structure
-
Document: Vector storage strategy
-
context/util/ingest.py - Document ingestion
- Document: Upload pipeline
- Document: File type handling
-
Document: Storage strategy
-
context/util/chunking.py - Text chunking
- Document: Chunking strategy
- Document: Jina API integration
-
Document: Chunk size tuning
-
context/util/embedding.py - Vector embeddings
- Document: Embedding model used
- Document: Dimension configuration
-
Document: API integration
-
context/util/db.py - Vector search
- Document: Similarity search implementation
- Document: pgvector operations
- Document: Query patterns
🟠 HIGH: Authentication System (15-59% coverage)¶
Essential for security and user management:
- auth/auth.py - Core authentication
- SessionData structure
- Session lifecycle
-
Cookie management
-
auth/azure_auth.py - Azure AD integration
- OAuth flow
- Token handling
-
Scopes configuration
-
auth/permissions.py - Permission checking
- Permission model
- Role-based access control
-
Resource access patterns
-
auth/provisioning.py - User provisioning
- User creation flow
- Role assignment
- Profile setup
🟠 HIGH: Utility Functions (26.1% file-level docs)¶
Large module with many helpers (23 files):
- util/ppt/ - PowerPoint processing
- ImageProcessor.py
- ImageTransformer.py
-
extract.py, prepare.py, replace.py
-
util/database.py - Database utilities
- Session management
-
Connection pooling
-
util/cacher.py - Caching system
- Cache strategies
-
Invalidation patterns
-
util/template_filters.py - Jinja filters
- Available filters
- Usage patterns
🟡 MEDIUM: Core Application (30% coverage)¶
- main.py (775 lines)
- Startup/shutdown flow
- Middleware setup
- Router registration
- Error handling strategy
-
Health check configuration
-
celery_app.py
- Task configuration
- Worker setup
- Queue management
- Result backend
🟡 MEDIUM: Peripheral Modules¶
- chat/router.py - Chat integration
- Widget setup
- Message flow
-
Context management
-
office365/router.py - Office integration
- OAuth flow
- File handling
- Integration points
How to Add Documentation¶
For Pydantic Schemas¶
Current example (GOOD):
class MySchema(BaseModel):
"""Brief description of schema."""
field_one: str = Field(..., description="What this field is for")
field_two: Optional[int] = Field(None, description="Optional field description")
class Config:
json_schema_extra = {
"example": {
"field_one": "example value",
"field_two": 42
}
}
For Functions¶
Current example (GOOD):
async def list_workflows(self, user_session: SessionData) -> List[WorkflowInfo]:
"""
List all workflows available to the user.
Args:
user_session: User session data for permission checking
Returns:
List of WorkflowInfo objects
Raises:
WorkflowEngineError: If unable to retrieve workflows
"""
pass
For Classes¶
Current example (GOOD):
class WorkflowEngine(ABC):
"""Abstract base class for all workflow engines."""
def __init__(self, engine_type: WorkflowEngineType, config: Optional[Dict[str, Any]] = None):
"""
Initialize workflow engine.
Args:
engine_type: Type of workflow engine (N8N, Prefect, etc)
config: Engine-specific configuration dictionary
"""
pass
For Modules (File-level)¶
Add at the top of each Python file:
"""
Module description here.
This module handles [main responsibility].
Classes:
ClassName: Brief description
Functions:
function_name: Brief description
"""
Quick Wins (Can Complete in <1 day)¶
- Add Field descriptions to auth/users/schemas.py
- 8 classes, minimal effort
-
Complete the API documentation
-
Add Field descriptions to context/schemas.py
- 8 classes, minimal effort
-
Enable OpenAPI docs for context
-
Add file-level docstrings to util/ module
- 23 files, ~2-3 minutes per file
-
Major improvement to overall coverage
-
Document PPT processing pipeline (util/ppt/)
- 6 files with processing logic
- Critical for understanding presentation generation
Recommended Reading Order¶
For developers new to the project:
- Read CLAUDE.md (project guidelines)
- Read DOCUMENTATION/README.md (overview)
- Read N8N_INTEGRATION.md (workflow system)
- Read USER_MANAGEMENT.md (auth system)
- Explore
/docsSwagger UI (API reference) - Read workflowengine/base.py (architecture)
- Read api/schemas.py (data models)
Auto-Documentation Access¶
FastAPI Swagger UI¶
- URL:
http://localhost:8000/docs - Shows: All 192 API endpoints with:
- Request/response schemas
- Query parameters
- Error responses
- Try-it-out functionality
OpenAPI JSON Schema¶
- URL:
http://localhost:8000/openapi.json - Use: Generate API clients, documentation sites, etc.
- Tool: Works with OpenAPI generators
ReDoc (Alternative UI)¶
- URL:
http://localhost:8000/redoc - Shows: Same info as Swagger, different layout
Tools Already Available¶
- FastAPI: Automatic OpenAPI generation
- Pydantic: Schema validation and documentation
- Type hints: 90% coverage for IDE support
- SQLAlchemy: ORM with model documentation
- .claude/DOCUMENTATION/: 9 existing guides
- .claude/../reports/technical/: 17 technical assessments
Next Steps¶
- Review: This document and the full audit report
- Prioritize: Context module first (highest impact)
- Document: Auth system second (critical for security)
- Enhance: Utility modules third (breadth of codebase)
- Create: Architecture diagrams and data flow docs
- Generate: API client from OpenAPI spec (optional)
Contact Points¶
For questions about specific modules, refer to: - Workflows: See workflowengine/base.py and registry.py - AI: See ai/lib.py and providers/ - API: See /docs or api/schemas.py - Storage: See filemanager/storage/base.py - Database: See CLAUDE.md configuration section - Auth: See auth/auth.py and Azure integration guide